SEGRE
 Juan Miguel Ribera

Juan Miguel RiberaSEGRE

Publicat per

Creat:

Actualitzat:

Un mètode habitual a l’hora de seleccionar personal quan hi ha molts candidats és fer un sorteig a partir de la inicial del cognom de tots els presentats. Aquest mètode consisteix a ordenar alfabèticament per cognom tots els candidats a aquesta plaça que es vol cobrir i escollir aleatòriament una lletra, aleshores l’afortunat és el primer aspirant que té el cognom començant per aquesta lletra. Si en lloc d’una plaça a cobrir són 10, per exemple, els afortunats són els 10 primers alfabèticament a partir de la lletra escollida a l’atzar. Tot i que la forma d’escollir la lletra sigui completament aleatòria –és a dir, totes les lletres tenen la mateixa probabilitat de sortir– no es tracta pas d’un sorteig just. I per què no és un sorteig just? Doncs perquè la distribució de les inicials dels cognoms dins de la població no és uniforme. Vegem-ho amb un exemple a partir dels cognoms de les quaranta persones que formen la plantilla i el cos tècnic del Lleida Esportiu de futbol.

Tal com mostra el gràfic de barres adjunt, no hi ha cap cognom començat per H, I, J, K, Q, W, X, Y ni Z. En canvi hi quatre cognoms començats per cadascuna de les lletres B, C, G, L, S i T. A partir d’aquí podrem treure diverses conclusions:

1) Els cognoms que comencen per la A tenen més probabilitats de ser escollits perquè no hi ha cap cognom que comenci per W, X, Y i Z i com que no hi ha cap cognom amb aquestes inicials es torna a començar per la A. Igual passaria en el nostre exemple amb els cognoms amb L si surt una H, una I, una J o una K.

2) Delgado i Díaz tenen menys probabilitats de ser escollits en un sorteig perquè la seua inicial està a continuació de lletres que són inicials de molts cognoms.

3) Si, per exemple, la lletra escollida és la L, León sempre serà escollit abans que Litwin, Liu i López. I si només hi ha una plaça en joc aquests últims tindrien una probabilitat del 0% de ser escollits mentre que León tindria una probabilitat de més del 19% de ser escollit. Absolutament injust. I com arreglem aquest desgavell probabilístic? D’una manera molt senzilla, assignant un número a cadascun dels participants i escollint un nombre a l’atzar.

Juan Miguel Ribera

El matemàtic valencià Juan Miguel Ribera de la comissió de joves de la Reial Societat de Matemàtiques d’Espanya ha posat el crit al cel i finalment ha aconseguit visualitzar aquesta injustícia probabilística utilitzada excessivament en l’administració pública (oposicions, assignació de pisos…). Ara bé, que les administracions corregeixin aquesta anomalia ja és una altra història.

 Juan Miguel Ribera

Juan Miguel RiberaSEGRE

tracking